
TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 1 of 11 eng.MCD.06.013

Subject: Recommended SMC Programming Style
Product: All SMC Controllers

The SMC controller runs an interpreted,
structured text program. The structure
is not strictly enforced; the program is a
simple text file with a list of instructions.
Yaskawa encourages providing structure
to the programs to increase readability
and organization. Programs that are not
well structured are more difficult to
debug and maintain. Yaskawa
recommends the following program
template layout because it is suitable for
any application.

Although most of the examples in the
manual are quite short and simple, many
applications require much more
comprehensive level of programming.
Feel free to include blank lines between
routines, and use the TAB key to indent,
making the program more readable.
YTerm compresses the blank lines and
tab characters out of the program
because the controller will not accept
them. Remember this, because if a program is uploaded from the controller, it
will have lost its formatting. YTerm v7.0 and up have an auto format function.

Summary: This document discusses the best implementation for an application program in an
SMC controller. It highlights and explains some subtle details that mean everything to the robust
operation of the machine.

Initialization

Main Loop

Application Specific

Routine 1 of…

Fault Handling

Application Specific

Routine 2 of …

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 2 of 11 eng.MCD.06.013

Initialization

Programs should start by initializing any special parameters and user variables
that will be used later in the program. Remember that variables must be
initialized before use, or a command error will result later in the program if the
variable appears on the right side of an equal sign, or as a command’s
parameter. The initialization section contains code that never needs to run again
after the initial power up. Programmers may choose to incorporate a homing
routine near the end of the initialization, just before entering the main loop of
the program.

Sometimes programmers will not want certain variables to be initialized at power
up, because they contain job-specific values. Variables can be saved to flash
memory by using the BV command within the program.

Did You Know?

A handy trick for variables that must retain their values after power cycle is to
include their initialization ABOVE the #AUTO label. These variables will only get
initialized if the “XQ” command is sent over the serial port or any Ethernet
handle. This is because the XQ command with no argument causes the program
to execute at the first line. In contrast, when the #AUTO label is included in the
program, execution starts at the label and continues from there, causing the
controller to skip commands above it.

The following is an example of an initialization section:

#AUTO; InitPass=0 // Auto execute at power up, and init success flag set to false.
// ------------------ Wizard Shell Code Initialization Section -------------------
 MOX; OP0 // Make sure motor is off and outputs are reset.
 Error=0 // Initialize Application Wizard error code system
 LimIgnor=0 // Initialize flag for limit switches during homing.
 TRUE=1; FALSE=0
 NT=_TM/1024 // Normalized Time, only required if servo update changed from 1000
uSec default.
// --------------- Homing Initialization -----------------
 homing=0 // 1 When homing, 0 when not
 homed=0 // 1 When homed,0 When not homed
 H_SW=-1; h_sw=-1 // Active state of the home input All caps is original config,
small is program switchable.
// ------------------ Rotary Table Initialization ----------------------------
 DM Accel[9]
 DM ApprDist[9]
 DM ApprOP[9]

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 3 of 11 eng.MCD.06.013

 DM Dwell1[9]
 DM Position[9]
 DM PostDWOp[9]
 DM Scurve[9]
 DM Speed[9]
 DM Station[9]
 DM StatOP[9]
 DM Modulus[3], OPosO[3], DL72[3]; i=0 // For the rotary calculations
 #InitMod; Modulus[i]=0; OPosO[i]=0; DL72[i]=0; i=i+1; JP #InitMod,i<3
 OldIndex=0; MachCyc=40960.0
 Bit=5; JS #XtoY; BitMaskO=XtoY
 MinBit=5; MaxBit=8; JS #MakeMsk; BitMask=MakeMsk
 WT 500/NT
 SHX; WT500/NT
 InitPass=1 // Initialization success flag, for special label usage

The highlighted commands are of additional importance. The User variable
“InitPass” serves as a flag to indicate that the program has successfully made it
through all of the initialization code. This is critical for the proper operation of
the fault handling routines that may run whenever their conditions are met. The
behaviors of the special labels are described later.

Main Loop

The main loop serves as the control center for all general machine logic. This is
typically a small part of the overall program. It is more efficient to include
mode-specific logic in lower level routines. Mode-specific logic includes
operations that are only active during a specific operation mode, such as manual
or auto. This allows for faster execution of the main loop logic, and easier code
debugging. The SMC runs an interpreter, which means that the text code of the
program is always being translated to machine language command by command.
Minimizing the amount of structured text code generally increases efficiency.

The following is an example of a small main loop:

#MAIN
 JS #HOME,((@IN[4]=1)&(homed=0))
 Index=(_TI&BitMask)/BitMaskO // Determine (by input) what Station to locate
 JS #ROTARY,(Index<=9) & (Index<>OldIndex) & (homed=TRUE)
JP #MAIN

Notice that the labels listed here show the modes of operation, and includes the
logic that makes then execute.

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 4 of 11 eng.MCD.06.013

Application Specific Routines

Application specific routines contain the core logic of the machine’s modes of
operation. The routine only runs when the logic in the main loop has
determined that all conditions have been met.

The following is an example of an application specific routine that indexes the
servo:

NOTE: "Automatic Index Subroutine"
#AUTOCYC
 Status=sAuto
 IF (_MOX=1); SHX; WT 1000; ENDIF
#INDEX
 JP #INDEX, ((MODE & IndexGo)=0) & ((MODE & AutoMode)=AutoMode)
 JP #AUTOERR,_RPX<>XHOME
 ACX=IdxDist/2/(IdxTime/3)/(IdxTime/3)+3300; DCX=_ACX
 SPX=IdxDist/2/(IdxTime/3)
 PRX=IdxDist; BGX; Parts=Parts+1; AMX
 SB INDEX1; WT Dwell; CB INDEX1
 #AUTO_DN
EN

#AUTOERR
 Status=sNotHome
 ATHOME=FALSE
 JP #AUTO_DN
EN

As shown above, supporting routines or
functions of an application specific
routine can be included below the
routine itself, such as #AUTOERR.

Notice the way in which this supporting
routine is called. It allows the original
Application Specific subroutine to “EN”
normally even if a diversion in the code
path occurred. The #AUTO_DN label
aides this technique.

Initialization

Main Loop

Application Specific

Routine 1 of…

Fault Handling

Application Specific

Routine 2 of …

Supporting

Routine

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 5 of 11 eng.MCD.06.013

Multitasking

Below is a block diagram
demonstrating the concept of
multitasking. Threads can be started
and stopped by each other at will.
The only limitation is that the thread
being launched with the XQ command
cannot be already executing. The
recommended method is to start
threads in the initialization section of
the program. Once started, they will
continue to operate until halted. The
controller will time share between
threads on a line-by-line basis. If one
program has more commands per
line, it will receive more of the total
execution time available.

Multitasking is a very useful method
of accomplishing several tasks that
have very little or nothing do with
each other. Focus remains specifically
on the given task, whereas extra
“juggling” code would be necessary to
adequately handle several unrelated
events in a single program loop.
Good examples of multitasking
include:

• Software limit updates for two
axes that operate in each
other’s zone where a collision
could occur

• An analog output that must be
updated continuously

• Short-term event that must be
monitored at the same time as

Initialization

Main Loop (0)

Application
Specific

Application
Specific

R ti 2 f

Supporting

Main Loop (1)

Application
Specific

Application
Specific

Supporting

Main Loop (2)

Application
Specific

Application
Specific

Supporting

Fault Handling

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 6 of 11 eng.MCD.06.013

another process (this is a “spur” thread that runs and dies after a certain
event is attained, such as a timer)

• I/O logic that must be solved at a regular interval
• Events that are related, but handled at different times, such as a

registration buffer that must store product positions, but the correction for
a particular product will occur slightly later

Watch Out!

Subroutines and other sections of code should not be intermixed between
threads to avoid complexity and possible erratic behavior.

Did You Know?

There is no need to multitask when moving two or more servos if these axes
always move in a predefined sequence. Some users incorrectly assume that
they must use a separate thread per axis. Experience will dictate when it is
better to use multitasking, and when one task will suffice.

Did You Know?

All variables & arrays defined in the program are global, meaning that all threads
can read and write the data. This is very useful when threads must share
information, such as a product registration buffer. This can be troubling if the
programmer unknowingly uses the same variable in both threads for something
simple, such as the variable “X” as a counter.

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 7 of 11 eng.MCD.06.013

Special Label & Fault Handling Routines

Fault Handling routines are the special labels that automatically execute without
being referred to in the program with a JP or JS. They are the following:

#AUTO Auto program execute at power up or reset.
#ININT Input interrupt for any combination of local inputs
#CMDERR Bad or illogical command handler
#POSERR Excessive position error
#LIMSWI Limit switch (Soft or Hard)
#TCPERR Ethernet TCP Error
#MCTIME Motion complete timeout

The #CMDERR, #POSERR, and #LIMSWI routines are highly recommended for
all applications to greatly increase their robustness. It is very important to
integrate Special Label routines with care by thinking about the program logic
required to make the machine run properly. The following are some DOs and
DON’Ts:

Recommended NOT Recommended
Abort motion for safety if a #CMDERR occurs. Always use
AB1.

Don’t return to the program using RE if a #CMDERR
occurs. Notify the operator, and make the code restart by
jumping to #AUTO, or simply use the AB, which requires
power cycle to restart.

Under #CMDERR, include a method for the error code
(_TC) and line number (_ED) to be identified by someone
who can help debug the program. Store them in a variable
and present them on an operator screen.

Avoid calling subroutines from within the special label
routine. You should only use the special label event
handlers to redirect the code and get the controller back on
its feet. Keep the routines simple and short. If the special
label routine causes another fault, it can cause a recursive
condition that cannot be recovered from without power
cycle.

Check for software and hardware limits for each axis in the
#LIMSWI routine.

Don’t set the software limits FL and BL to the same value;
the servo will not be able to move once it crosses that
position. Check the Stop Code (SC)

Keep the fault handlers short and simple. Do not perform
motion from within them. Instead, re-direct the code to
subroutines that can correct the problem or allow the
machine to resume successfully. The system is at risk for
compounded problems caused by trying to run elaborate
code from within the fault routines. Just use them to trap
errors, and signal the main parts of the program to handle
the recovery.

 Don’t use the ZS command to correct programming
problems with the JS and JP commands. The best use of
ZS is to close out the special label event, otherwise, it is
bad programming practice.

Other considerations

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 8 of 11 eng.MCD.06.013

• There is always a chance that special label routines could execute just
after power up, but before the initialization section has completed. If any
of the special routines jump to the #MAIN loop after recovery, problems
could occur because of commands that were “skipped” in the initialization.
To avoid this, use a flag such as the one in the above examples called
“InitPass,” and check it’s value when deciding where to resume after a
special label event. It is possible that the servo could have following error
when the program starts, and the program will immediately jump to
#POSERR. Once the following error is cleared, the #POSERR must check
the initialization flag to decide whether to jump back to the top of the
program or to the #MAIN loop.

• If a Command Error occurs in the #CMDERR routine, #CMDERR will
recursively call itself (to indicate the additional command errors), and
cause a stack overflow, stopping execution of the application program.
Be extra cautious when programming in the #CMDERR routine to
minimize this possibility. If you suspect a #CMDERR in the #CMDERR
routine, it can be debugged by placing an MG command as the first
command within the routine so you can see the message print out at the
terminal screen of Yterm each time an error occurs.

• If a thread other than thread zero causes a command error, this can be

determined in code by using the _ED1 parameter. If another thread has
an error, it is possible to restart it, although it will eventually require a
program fix. Use the HX and XQ commands within the #CMDERR routine
to restart the troubled thread at it’s main label. Usually it’s too complex
to resume after a serious fault. Remember that all special label routines
run as subroutines of thread zero, so in this case, an RE1 command will
be necessary for thread zero to resume.

Example Fault handling Routines

#CMDERR A
 JP #LIMSWI,_TC=22 B
 JP #PROBLEM,_TC<>30; RE1 C
 #PROBLEM D
 AB1; CB DREMEL E
 STATUS=CMDERRSL F
// MG "Error "{N}; TC1{N} G
// MG " on line",_ED{F3.0} H
 #CWAIT I
 WT250/NT J
JP#CWAIT,(vbCMD&vbRESET)=vbRESET K

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 9 of 11 eng.MCD.06.013

 vbCMD=vbIDLE; ZS; IIESTOP,,,$80 L
JP#AUTO M

In the above routine, there is first a check to see if the fault code is a limit
switch (line B). The SMC controllers have an odd behavior that treats the limit
switch as either a limit fault, or command error based on when the limit was
exceeded. If the limit is already exceeded when a BG command executes, then
a command fault occurs. Adding a jump to #LIMSWI is a handy way to redirect
the issue, making all limit switch faults handled the same way no matter when
they occur.

Secondly, there is another nuisance fault code that may come up when doing
vector motion. If a sequence is zero length, meaning there would be no motion,
the controller issues the command error “Sequence Segment is too short.” Since
this otherwise causes no problem in the controller, it is safe to ignore the fault,
and let the code resume (line C). There is an IF ELSE statement set up (line C &
D); the controller skips the RE statement and jumps to #PROBLEM for any other
fault. So if 30 is the fault, #CMDERR exits via the RE1 statement, otherwise,
there is more to be done.

Next, motion is aborted with the AB1 command. An output named DREMEL is
turned off (line E).

Because this example program is controlled by a Visual Basic application running
on a PC, the status of the machine is stored in a user-defined variable called
STATUS (line F). Because the program is now in the #CMDERR routine, the
STATUS variable is changed to reflect this in the PC. The PC application can
then notify the user of the problem.

The commented-out code is handy during debug. These lines produce a nicely
formatted message on the terminal screen of Y-Term. (Lines G &H)

Next, the program simply waits in a loop for the Visual Basic application to
change the “vbCMD” variable to acknowledge the fault (lines I,J,K.) The SMC
will then prepare to exit the #CMDERR routine (lines L & M.) The subroutine

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 10 of 11 eng.MCD.06.013

stack is cleared, making possible a successful jump back to the start of the
program. This is effectively the same as a restart of the controller.

#POSERR // This is an automatically executing

subroutine if position error is exceeded at
any time.

 AB1; L=0; MODE=0
 #ERRLP2
 OP$FF; WT500/NT; OP0; WT500/NT // Toggle all outputs on and off every

500mSec.
 L=L+1 // Increment counter
 JP#ERRLP2,L<15 // Repeat 15 times
 AI-3; AI3 // Wait for rising edge of input 3
 SH; MO // SH command clears out following error.
 ZS // Clear subroutine stack, this also

resets the fault routine.
 JP#MAIN,OK=1 // Jump back to the main loop only if the

OK flag is 1, meaning the initialization has
completed

 JP#AUTO // Jump back to the start of the program
EN

If any axis exceeds the following error limit (absolute value of TE > ER) during
any servo update cycle AND this label is included in the program, program
execution will automatically jump to #POSERR. This includes following error for
slaves on SMC3010 distributed control topologies, because the slave status is
provided to the master at the slave update interval.

The only thing the controller firmware will do automatically is disable the servo,
but ONLY of the OE command is set to 1. It’s the programmer’s responsibility to
make sure the controller can recover from the fault. Yaskawa recommends
using the AB1 command to abort the motion profiler. Some machines may not
tolerate an abrupt halt of the servo caused by AB1. For those machines that
require an abort, but with gentler deceleration, use the ST and DC command.
It’s true that the deceleration parameter can’t be changed while performing a
point to point move, but the controller will allow the deceleration to be changed
AFTER the ST has been issued. Setting the deceleration to a quick but gentle
value is usually best on a large machine, with high inertia or a high mechanical
gear ratio.

TECHNICAL NOTE
MOTION PRODUCT AND ENGINEERING GROUP

Yaskawa Electric America - 2121 Norman Drive South – Waukegan IL 60085
(800) YASKAWA - Fax (847) 887-7280

4/11/2006 11 of 11 eng.MCD.06.013

This example program toggles all outputs every ½ second. Any method that
alerts the operator will work. The program will then wait for the operator to
reset the fault by toggling input 3.

The next part is very important. Remember that the following error is measured
every servo cycle, all the time. If the following error is not reduced / eliminated
before exiting the fault routine, #POSERR will immediately execute again. In
this example, the SH and MO commands clear the following error. (SH enables
and clears following error, the MO command used because we don’t want the
motor enabled just yet.) The final command, ZS, is the official exit of the fault
routine. All code after it is considered normal, or external to the fault routine.
This can be verified by checking the TB command.

